# Worksheet 9 Solution 

Fred Azizi

2023-11-20

1. The manager of a gas station has observed that the times required by drivers to fill their car's tank and pay are quite variable. In fact, the times are exponentially distributed with a mean of 7.5 minutes.
a. What is the probability that a transaction is completed in less than 5 minutes?
b. What is the probability that a car can complete the transaction between 5 minutes to 10 minutes?
c. What is the standard deviation of time until a transaction is completed?

## Answer:

$\mu=7.5$. We know $\frac{1}{\lambda}=\mu$. Hence, $\lambda=\frac{1}{7.5}=0.13$. Therefore, $T \sim \exp (\lambda=0.13)$.
(a) Using formula in the textbook or slides: $P(T<5)=1-e^{-0.13 \times 5}=0.4779542$.
(b) Using formula in the textbook or slides: $P(5<T<10)=e^{-0.13 \times 5}-e^{-0.13 \times 10}=0.249514$.
(c) For Exponential distribution, $\sigma=\mu=7.5$.
2. Find the mean and standard deviations:
a. $t_{5}$.

A: $E(t)=0$ regardless of degrees of freedom. $V(t)=\frac{5}{5-2}=\frac{5}{3} \cdot S d(t)=\sqrt{\frac{5}{3}}=1.291$.
b. $\chi_{9}^{2}$.

A: $E\left(\chi_{9}^{2}\right)=9 . V\left(\chi_{9}^{2}\right)=2 \times 9=18 . S d\left(\chi_{9}^{2}\right)=\sqrt{18}=4.243$.
c. $F_{5,15}$.
$\mathrm{A}: E\left(F_{5,15}\right)=\frac{15}{15-2}=\frac{15}{13} . \quad V\left(F_{5,15}\right)=\frac{2 \times 15^{2}(5+15-2)}{5(15-2)^{2}(15-4)} \approx 0.8714363 . \quad S d\left(F_{5,15}\right)=$ $\sqrt{V\left(F_{5,15}\right)}=0.935$.
3. A sample of 40 retirees is drawn at random from a population whose mean age is 72 and standard deviation is 9 .
a. What is the distribution of the sample mean?

Answer:
$\bar{X} \rightarrow$ mean age of retirees based on a sample of $n=40 \rightarrow \bar{X} \sim N\left(72, \frac{9}{\sqrt{40}}\right)=$ $N(72,1.423)$
b. What is the probability that the mean age of the sample exceeds 73 years old?

## Answer:

$$
\begin{aligned}
P(\bar{X}>73) & =1-P(\bar{X} \leq 73) \\
& =1-P\left(\frac{\bar{X}-72}{1.423} \leq \frac{73-72}{1.423}\right) \\
& =1-P(Z \leq 0.70) \\
& =1-0.7580=0.242
\end{aligned}
$$

(Standardize to use table)
(From table, $P(Z<0.70)=0.758$ )
c. What is the probability that the mean age of the sample is at most 73 years old?

## Answer:

Using part b:

$$
P(\bar{X} \leq 73)=1-P(\bar{X}>73)=0.7580
$$

d. What is the probability that the mean age of the sample is between 72 and 75 years old?

## Answer:

$$
\begin{aligned}
P(72<\bar{X}<75) & =P(\bar{X}<75)-P(\bar{X} \leq 72) \\
& =P\left(\frac{\bar{X}-72}{1.423}<\frac{75-72}{1.423}\right)-P\left(\frac{\bar{X}-72}{1.423} \leq \frac{72-72}{1.423}\right) \\
& =P(Z<2.11)-P(Z<0) \\
& =0.9826-0.5=0.4826
\end{aligned}
$$

e. What is the probability that a randomly selected retiree is over 73 years old?

## Answer:

This question is asking for $P(X>73)$. We can't answer this question since we don't know the distribution of the population. We only know the distribution of $\bar{X}$, not $X$ itself (later, we will learn how we may be able to estimiate this from data).
4. The amount of time spent by American adults playing Poker is Normally distributed with a mean of 4 hours and standard deviation of 1.25 hours. If four American adults are randomly selected, find the probability that:
a. their average number of hours spent playing Poker is more than 5 hours per week.

## Answer:

We know that $\bar{X} \sim N\left(4, \frac{1 \cdot 25}{\sqrt{4}}\right)$. Hence:

$$
\begin{aligned}
P(\bar{X}>5) & =1-P[\bar{X} \leq 5] \\
& =1-P\left(\frac{\bar{X}-4}{0.625} \leq \frac{5-4}{0.625}\right) \\
& =1-P[Z<1.6]=1-0.9452=0.0548
\end{aligned}
$$

b. their average number of hours spent playing Poker is between 3 and 6 hours per week.

## Answer:

$$
\begin{aligned}
P(3<\bar{X}<6) & =P(\bar{X}<6)-P(\bar{X} \leq 3) \\
& =P(Z<3.2)-P(Z<-1.6) \\
& =0.9993-0.0548=0.9445
\end{aligned}
$$

c. all four play Poker for more than 5 hours per week.

## Answer:

$$
\begin{gathered}
P(X>5)=1-P(X \leq 5)=1-P(Z \leq 0.8)=1-0.7881=0.2119 \\
P(x>5) \cdot P(x>5) \cdot P(x>5) \cdot P(x>5)=\{P(x>5)\}^{4}=(0.2119)^{4}=0.002
\end{gathered}
$$

5. To estimate the mean salary for a population of 500 employees, the president of a certain company selected at random a sample of 40 employees.
a. Would you use the finite population correction factor in calculating the standard error of the sample mean in this case? Explain.

## Answer:

$\frac{n}{N}=\frac{40}{500}=0.08>0.05 \Rightarrow$ FPC is needed.
b. If the population standard deviation is $\$ 800$, compute the standard error both with and without using the finite population correction factor.

## Answer:

With FPC:

$$
\sigma_{\bar{X}}=\sqrt{\frac{N-n}{N-1}} \cdot \frac{\sigma}{\sqrt{n}}=\sqrt{\frac{500-40}{500-1}} \cdot \frac{800}{\sqrt{40}}=121.4475
$$

Without FPC:

$$
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}=\frac{800}{\sqrt{40}}=126.4911
$$

