Worksheet 6 Solution

Fred Azizi

2023-10-24

1. The number of pizzas delivered to university students each month is a random variable with the following probability distribution.

X	0	1	2	3
$\mathrm{P}(\mathrm{x})$	0.1	0.3	0.4	0.2

(a) Find $\mathrm{P}(\mathrm{X} \leq 2)$.
(b) $\mathrm{P}(1 \leq \mathrm{X} \leq 2)$.
(c) Determine the mean and variance of X.
(d) Suppose $Y=3 X+4$ for each value of X, Calculate the mean and sd of Y.

Answer:

(a) $P(X \leq 2)=P(x=0)+P(x=1)+P(x=2)=0.1+0.3+0.4=0.8$
(b) $P(1 \leq x \leq 2)=P(x=1)+P(x=2)=0.7$
(c)

$$
\begin{aligned}
\mu=E(x)=\sum x \cdot P(x)= & 0 \times 0.1+1 \times 0.3+2 \times 0.4+3 \times 0.2=1.7 \\
V(x)=\sum(x-\mu)^{2} \cdot P(x)= & (0-1.7)^{2} \times 0.1+(1-1.7)^{2} \times 0.3+(2-1.7)^{2} \times 0.4 \\
& +3 \times(3-1.7)^{2} \times 0.2=0.81
\end{aligned}
$$

(d)

$$
\begin{aligned}
& E(y)=E(3 x+4)=3 E(x)+4=3 \times 1 \cdot 7+4=9.1 \\
& V(y)=V(3 x+4)=9 V(x)+0=7.29 \\
& s d(y)=\sqrt{V(y)}=\sqrt{7.29}=2.7
\end{aligned}
$$

2. The number of persons living per household in a city was collected and were summarized. The frequency table is given below:

Number of persons	1	2	3	4	5	6	7
Number of households (millions)	3.1	4.5	3.8	2.5	2.4	2.5	1.2

Define X as the number of people per household.
(a) Write down the probability distribution of X.
(b) Find $P[X \geq 4]$
(c) Find $\mathrm{P}[2 \leq \mathrm{X}<4]$

Answer:

(a)

X	1	2	3	4	5	6	7
$P(x)$	0.155	0.225	0.19	0.125	0.12	0.125	0.06

(b) $P[X \geq 4]=P(x=4)+P(x=5)+P(x=6)+P(x=7)=0.125+0.12+0.125+0.06=0.43$
(c) $\mathrm{P}[2 \leq X<4]=P(x=2)+P(x=3)=0.225+0.19=0.415$
3. Indicate whether each random variable is Binomial, Poisson or neither:
a. A random variable X counts the number of visits to a webpage in a one-hour period. Poisson
b. A random variable X counts the number of defectives in a sample of 100 stamps. Binomial
c. A random variable X counts the number of hearts drawn from a well shuffled deck of 52 playing cards if 10 cards were drawn one at a time without replacement. Neither
d. A random variable X counts the number of hearts drawn from a well shuffled deck of 52 playing cards if 10 cards were drawn with replacement. Binomial
4. 5 students are giving a make-up quiz. The probability of any of them scoring more than 25 is 0.6 . Let X be the number of students who get over 25 .
a. Identify the distribution of X and its parameters.
b. What is the probability that none of the students score over 25 ?
c. What is the probability that at least one of them score over 25 ?
d. What is the probability that all of them score over 25 ?

Answer:

(a) $X \sim \operatorname{Bin}(n=5, p=0.6)$.
(b) Using table in the textbook: $P[X=0]=P[X \leqslant 0]=0.0102$.

Or you can calculate directly. $P[X=0]=5 C 0 p^{0}(1-p)^{5-0}=0.1024$.
(c) $P(X \geqslant 1)=1-P(X<1)=1-P(X \leqslant 0)=1-0.0102=0.9898$.
(d) $P(X=5)=P(X \leqslant 5)-P(X \leqslant 4)=1-0.9222=0.0788$.

Or (again) you can calculte directly: $P[X=5]=5 C 5 p^{5}(1-p)^{5-5}=0.07776$

