Worksheet 5 Solution

Fred Azizi

2023-10-17

1. 4 candidates are running for mayor; Adams, Brown, Collins and Dalton (We assume one of the candidates is going to win, there is no run off). The following probabilities are assigned:

$$
\begin{aligned}
& P[\text { Adams wins }]=0.42 \quad P[\text { Brown wins }]=0.09 \\
& P[\text { Collins wins }]=0.27 \quad P[\text { Dalton wins }]=0.22
\end{aligned}
$$

Determine the probabilities for the following events (use 2 decimal places):
a. Adams loses.

Answer:
Use the complement Rule.
$P[$ Adams lose $]=1-\mathrm{P}[$ Adams wins $]=1-0.42=0.58$.
b. Either Brown or Dalton wins.

Answer:

Note that only one can win, therefore probability of both of them winning (P (brown win \cap Dalton win) $=0$). Use the addition rule:

$$
P[\text { Brown win }]+P[\text { Dalton win }]=0.09+0.22=0.31
$$

c. Adams, Brown, or Collins wins.

Answer:

Two options. First one is the use of complement rule:
$P[$ Adams wins or Brown wins or Collins wins $]=1-P[$ Dalton win $]=1-0.22=0.78$
Or user addition rule considering that probability of all intersections are zero.
P [Adams wins or Brown wins or Collins wins $]=P$ [Adams wins $]+P[$ Brown wins $]+P[$ Collins wins $]=0.42+0.09+0.27=0.78$.
2. $P[A]=0.30$ and $P[B]=0.40$. If A and B are mutually exclusive events, what is $P[A \cup B]$?

Answer:

Since A and B are mutually exclusive events, then $P(A \cap B)=0$. Using the addition rule:

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& =P(A)+P(B)-0=0.30+0.40=0.7
\end{aligned}
$$

3. $P[A]=0.60$ and $P[B]=0.70$. If A and B are independent events, what is $P[A \cup B]$?

Answer:

Since A and B are independent events, then $P(A \cap B)=P(A) \cdot P(B)$. Using the addition rule again:

$$
\begin{gathered}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
P(A \cup B)=P(A)+P(B)-P(A) P(B)=0.6+0.7-.42=0.88
\end{gathered}
$$

4. Assume you have applied for two scholarships, a Merit scholarship (M) and an Athletic scholarship (A). The probability that you receive an Athletic scholarship is 0.18 . The probability of receiving both scholarships is 0.11 . The probability of getting at least one of the scholarships is 0.3 . (i.e. $P(A)=0.18$, $P(A \cap M)=0.11$, and $P(A \cup M)=0.3$.)
(a) What is the probability that you will receive a Merit scholarship?

Answer:

$$
\begin{aligned}
& P(A \cup M)=P(A)+P(M)-P(A \cap M) \\
\Rightarrow & 0.3=0.18+P(M)-0.11 \Rightarrow P(M)=0.23
\end{aligned}
$$

(b) Are events A and M mutually exclusive? Why or why not? Explain.

Answer:
$P(A \cap M) \neq 0 \Rightarrow A$ and M are not mutually exclusive.
(c) Are the two events A, and M, independent? Explain, using probabilities.

Answer:

$P(A \cap M)=0.11$. But $P(A) \cdot P(M)=0.0414$. Therefore, $P(A \cap M) \neq P(A) \cdot P(M)$.
Hence A and M are not independent.
(d) What is the probability of receiving the Athletic scholarship given that you have been awarded the Merit scholarship?

Answer:

$$
P(A \mid M)=\frac{P(A \cap M)}{P(M)}=\frac{0.11}{0.23}=0.4783
$$

5.60% of the student body at UTC is from the state of Tennessee (T), 30% are from other states (O), and the remainder constitutes international students (I). Twenty percent of students from Tennessee lives in the dormitories, whereas, 50% of students from other states live in the dormitories. Finally, 80% of the international students live in the dormitories.
(a) What percentage of UTC students lives in the dormitories?
(b) Given that a student lives in the dormitory, what is the probability that they are an international student?
(c) Given that a student does not live in the dormitory, what is the probability that they are an international student?

Answer:

(a)
$P(T)=0.6, P(O)=0.3, P(I)=0.1$.
$P(D \mid T)=0.2 \rightarrow P\left(D^{c} \mid T\right)=1-P(D \mid T)=0.8 . P(D \mid O)=0.5 \rightarrow P\left(D^{C} \mid O\right)=0.5$. And $P(D \mid I)=0.8 \rightarrow P\left(D^{C} \mid I\right)=0.2$.

$$
\begin{aligned}
P(D) & =P(D \cap T)+P(D \cap O)+P(D \cap I) \\
& =P(D \mid T) \times P(T)+P(D \mid O) \times P(O)+P(D \mid I) \times P(I) \\
& =0.2 \times 0.6+0.5 \times 0.3+0.8 \times 0.1 \\
& =0.12+0.15+0.08=0.35
\end{aligned}
$$

(b) $P(I \mid D)=\frac{P(I \cap D)}{P(D)}=\frac{0.8 \times 0.1}{0.35}=0.229$. Note that for $P(I \cap D)$, we used what we had in the calculation of part a.

Alternatively, using Bayes rule: $P(I \mid D)=\frac{P(D \mid I) \cdot P(I)}{P(D)}=\frac{0.8 \times 0.1}{0.35}=0.229$.
(c)

$$
\begin{gathered}
P\left(I \mid D^{c}\right)=\frac{P\left(I \cap D^{c}\right)}{P\left(D^{c}\right)}=\frac{P\left(D^{c} \mid I\right) \cdot P(I)}{P\left(D^{c}\right)}=\frac{P\left(D^{c} \mid I\right) \cdot P(I)}{1-P(D)} \\
=\frac{0.2 \times 0.1}{0.65}=0.0308
\end{gathered}
$$

6. A survey asked 100 residents in a town whether they are smokers. Given the following information on the residents' response:

	Daily Workout	No daily workout	Total
Non-smoker	40	30	70
Smoker	20	10	30
Total	60	40	100

(a) Find the joint probability table.
(b) What is the probability that a randomly selected resident worksout daily?
(c) What is the probability that a randomly selected resident doesn't workout daily?
(d) What is the probability that a randomly selected resident worksout daily and is a smoker?
(e) What is the probability that a randomly selected resident worksout daily or is a smoker?
(f) A randomly selected resident doesn't workout daily. What is the probability that the resident is a smoker?

Answer:

(a)

	DW	NDW	Total
$N S$	0.4	0.3	0.7
S	0.2	0.1	0.3
Total	0.6	0.4	1

(b) $P(D W)=0.6$.
(c) $P(N D W)=1-P(D W)=0.4$
(d) $P(D W \cap S)=0.2$
(e)

$$
\begin{aligned}
P(D W \cup S)=P(D W)+P(S)-P(D W \cap S) & =0.6+0.3-0.2 \\
& =0.7
\end{aligned}
$$

(f) $P(S \mid N D W)=\frac{P(S \cap N D W)}{P(N D W)}=\frac{0.1}{0.4}=0.25$

