Worksheet 4 Solution

Fred Azizi

2023 - 10 - 03

1. The following data has mean income and housing for 10 cities in Florida. Values are in dollars (\$) and rounded to the nearest thousand.

City	Income (\boldsymbol{x})	Housing (y)
A	26	109
В	29	97
С	25	115
D	28	99
Е	38	122
F	32	145
G	25	100
Н	22	76
Ι	29	113
J	42	144

- a. Calculate the correlation coefficient between **x** and **y**. What can you conclude about the relationship between the 2 variables?
- b. Calculate the least square line.
- c. Calculate the coefficient of variation.

Answer:

a.

x_i	y_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$	$y_i - \bar{y}$	$\left(y_i - \bar{y}\right)^2$	$(x_i - \bar{x})(y_i - \bar{y})$
26	109	-3.6	12.96	-3	9	10.8
29	97	-0.6	0.36	-15	225	9
25	115	-4.6	21.16	3	9	-13.8
28	99	-1.6	2.56	-13	169	20.8
38	122	8.4	70.56	10	100	84
32	145	2.4	5.76	33	1089	79.2
25	100	-4.6	21.16	-12	144	55.2
22	76	-7.6	57.76	-36	1296	273.6
29	113	-0.6	0.36	1	1	-0.6
42	144	12.4	153.76	32	1024	396.8
$\bar{x} = 29.6$	$\bar{y} = 112$		346.4		4066	915

$$SD(x) = \sqrt{\frac{346.4}{9}} = 6.2039$$

 $SD(y) = \sqrt{\frac{4066}{9}} = 21.255$

Correlation: $r = \frac{s_{xy}}{s_x s_y} = \frac{\frac{1}{9} \times 915}{6.2039 \times 21.255} \approx 0.77$. Correlation is greater than zero and close to 1. Hence, as x increases, y increases as well.

 $\mathbf{b}.$

$$b_1 = \frac{s_{xy}}{s_x^2} = \frac{\frac{1}{9} \times 915}{6.2039^2} \approx 2.641491$$

$$b_0 = \bar{y} - b_1 \bar{x} = 112 - 2.641491 \times 29.6 \approx 33.81$$

Least square line can be written as $\hat{y} = 33.81 + 2.64x$.

c.

coefficient of variation:

$$CV(x) = \frac{S_x}{\bar{x}} \times 100 = \frac{6.2039}{29.6} \times 100 = 20.96\%$$
$$CV(y) = \frac{S_y}{\bar{y}} \times 100 = \frac{21.255}{112} \times 100 = 18.98\%$$

2. A sample of 30 observations has a standard deviation of 4. Find the sum of squared deviations from the sample mean.

Answer:

We note that n = 30

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

$$4 = \sqrt{\frac{\sum (x_i - \bar{x})^2}{30 - 1}}$$

$$16 = \frac{\sum (x_i - \bar{x})^2}{29}$$

$$\to \sum (x_i - \bar{x})^2 = 16 \times 29 = 464$$

3. Following observations are given for two variables.

У	\mathbf{x}		
5	2		
8	12		
18	3		
20	6		
22	11		
30	19		
10	18		
7	9		

a. Compute and interpret P_{86} .

Answer:

ordered y: 5 7 8 10 18 20 22 30

$$L_{86} = (8+1)\frac{86}{100} = 7.74$$
. Therefore, $P_{86} = 22 + (30-22) \times 0.74 = 27.92$

ordered x: 2 3 6 9 11 12 18 19

$$L_{86} = (8+1)\frac{86}{100} = 7.74$$
. Therefore, $P_{86} = 18 + (19 - 18) \times 0.74 = 18.74$

b. Compute and interpret the correlation coefficient.

Answer:

Using a calculator, the correlation coefficient is approximately 0.345. This indicates a positive and moderately weak relationship between x and y.