Worksheet 4 Solution

Fred Azizi

2023-10-03

1. The following data has mean income and housing for 10 cities in Florida. Values are in dollars (\$) and rounded to the nearest thousand.

City	Income (x)	Housing (y)
A	26	109
B	29	97
C	25	115
D	28	99
E	38	122
F	32	145
G	25	100
H	22	76
I	29	113
J	42	144

a. Calculate the correlation coefficient between x and y. What can you conclude about the relationship between the 2 variables?
b. Calculate the least square line.
c. Calculate the coefficient of variation.

Answer:

a.

x_{i}	y_{i}	$x_{i}-\bar{x}$	$\left(x_{i}-\bar{x}\right)^{2}$	$y_{i}-\bar{y}$	$\left(y_{i}-\bar{y}\right)^{2}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
26	109	-3.6	12.96	-3	9	10.8
29	97	-0.6	0.36	-15	225	9
25	115	-4.6	21.16	3	9	-13.8
28	99	-1.6	2.56	-13	169	20.8
38	122	8.4	70.56	10	100	84
32	145	2.4	5.76	33	1089	79.2
25	100	-4.6	21.16	-12	144	55.2
22	76	-7.6	57.76	-36	1296	273.6
29	113	-0.6	0.36	1	1	-0.6
42	144	12.4	153.76	32	1024	396.8
$\bar{x}=29.6$	$\bar{y}=112$		346.4		4066	915

$$
\begin{aligned}
& S D(x)=\sqrt{\frac{346.4}{9}}=6.2039 \\
& S D(y)=\sqrt{\frac{4066}{9}}=21.255
\end{aligned}
$$

Correlation: $r=\frac{s_{x y}}{s_{x} s_{y}}=\frac{\frac{1}{9} \times 915}{6.2039 \times 21.255} \approx 0.77$. Correlation is greater than zero and close to 1 . Hence, as x increases, y increases as well.
b.

$$
\begin{gathered}
b_{1}=\frac{s_{x y}}{s_{x}^{2}}=\frac{\frac{1}{9} \times 915}{6.2039^{2}} \approx 2.641491 \\
b_{0}=\bar{y}-b_{1} \bar{x}=112-2.641491 \times 29.6 \approx 33.81
\end{gathered}
$$

Least square line can be written as $\hat{y}=33.81+2.64 x$.
c.
coefficient of variation:

$$
\begin{aligned}
& C V(x)=\frac{S_{x}}{\bar{x}} \times 100=\frac{6.2039}{29.6} \times 100=20.96 \% \\
& C V(y)=\frac{S_{y}}{\bar{y}} \times 100=\frac{21.255}{112} \times 100=18.98 \%
\end{aligned}
$$

2. A sample of 30 observations has a standard deviation of 4 . Find the sum of squared deviations from the sample mean.

Answer:

We note that $n=30$

$$
\begin{aligned}
s & =\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}} \\
4 & =\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{30-1}} \\
16 & =\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{29} \\
& \rightarrow \sum\left(x_{i}-\bar{x}\right)^{2}=16 \times 29=464
\end{aligned}
$$

3. Following observations are given for two variables.

\mathbf{y}	\mathbf{x}
5	2
8	12
18	3
20	6
22	11
30	19
10	18
7	9

a. Compute and interpret P_{86}.

Answer:

ordered $y: 5781018202230$
$L_{86}=(8+1) \frac{86}{100}=7.74$. Therefore, $P_{86}=22+(30-22) \times 0.74=27.92$
ordered x : 236911121819
$L_{86}=(8+1) \frac{86}{100}=7.74$. Therefore, $P_{86}=18+(19-18) \times 0.74=18.74$
b. Compute and interpret the correlation coefficient.

Answer:

Using a calculator, the correlation coefficient is approximately 0.345 . This indicates a positive and moderately weak relationship between x and y .

