Worksheet 10 Solution

Fred Azizi

2023-11-28

1. Michael is running for president. The proportion of voters who favor Michael is 0.8 . A random sample of 100 voters is taken.
a. What is the distribution of the sample proportion \hat{p} ?

Answer:

$$
p=0.8 \quad n=100 \rightarrow n \times p=80, \quad n(1-p)=20 \geqslant 5
$$

Therefore \hat{p} is Normal. $\hat{\mu}_{\hat{p}}=p=0.8$

$$
\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.8 \times 0.2}{100}}=0.04 \quad \therefore \hat{p} \sim N\left(0.8,0.04^{2}\right)
$$

b. What is the probability that the number of voters in the sample who will vote for Michael will be between 80 and 90 ?

Answer:

Let X be the number of voters in the sample voting for Michael

$$
\begin{aligned}
P[80<X<90] & =P\left[\frac{80}{100}<\frac{X}{100}<\frac{90}{100}\right] \\
& =P[0.8<\hat{p}<0.9] \\
& =P\left[\frac{0.8-0.8}{0.04}<\frac{\hat{p}-0.8}{0.04}<\frac{0.9 .0 .8}{0.04}\right] \\
& =P[0<z<2.5] \\
& =P[z<2.5]-P[z<0] \\
& =0.9938-0.5 \\
& =0.4938
\end{aligned}
$$

c. What is the probability that the number of voters in the sample who will not favor Michael will be more than 16 ?

Answer:

If we define X as what we had in part b , then we are looking for the probability of $100-X>16$.

$$
\begin{aligned}
P[100-X>16] & =p[100-16>X] \\
& =P[X<84] \\
& =P\left[\frac{X}{100}<\frac{84}{100}\right] \\
& =P[\hat{p}<0.84] \\
& =P\left[\frac{\hat{p}-0.8}{0.04}<\frac{0.84-0.8}{0.04}\right] \\
& =P[Z<1] \\
& =0.8413
\end{aligned}
$$

2. The chairman of the Biology department in a certain college believes that 70% of the department's graduate internships are given to international students. A random sample of 50 graduate interns is taken.
a. What is the distribution of the sample proportion?

Answer:

$$
\begin{aligned}
p= & 0.7 \quad n=50 \\
\rightarrow & n p=35 \geq 5 \\
& n(1-p)=15 \geq 5
\end{aligned}
$$

Therefore, we can use Central Limit Theorem.

$$
\begin{aligned}
& \mu_{\hat{p}}=p=0.7 \quad \sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.7 \times 0.3}{50}}=0.065 \\
& \therefore \hat{p} \sim N\left(0.7,0.065^{2}\right)
\end{aligned}
$$

b. What is the probability that the sample proportion \hat{p} is between 0.65 and $0.73 ?$

Answer:

$$
\begin{aligned}
P[0.65<\hat{p}<0.73] & =P\left[\frac{0.65-0.7}{0.065}<Z<\frac{0.73-0.7}{0.065}\right] \\
& =P[-0.77<Z<0.46] \\
& =P[Z<0.46]-P[Z<-0.77] \\
& =0.6772-0.2206 \\
& =0.4566
\end{aligned}
$$

c. What is the probability that the sample proportion \hat{p} is within $\pm .05$ of the population proportion p?

Answer:

$$
\begin{aligned}
P[\hat{p} \text { is between } p \pm 0.05] & =P[p-0.05<\hat{p}<p+0.05] \\
& =P[0.7-0.05<\hat{p}<0.7+0.05] \\
& =P[0.65<\hat{p}<0.75] \\
& =P\left[\frac{0.65-0.7}{0.065}<Z<\frac{0.75-0.7}{0.065}\right] \\
& =P[-0.77<z<0.77] \\
& =P[z<0.77]-P[z<-0.77] \\
& =0.7794-0.2206 \\
& =0.5588
\end{aligned}
$$

3. A professor of statistics noticed that the marks in his course are normally distributed. He has also noticed that his morning classes average 73%, with a standard deviation of 12% on their final exams. His afternoon classes average 77%, with a standard deviation of 10%. What is the probability that the mean mark of four randomly selected students from a morning class is greater than the average mark of four randomly selected students from an afternoon class?

Answer:

Since both populations are Normally distributed, we don't care that sample sizes are less than 30 .

We want $P\left(\bar{X}_{\text {Morning }}>\bar{X}_{\text {Afternoon }}\right)$ or equivalently $P\left(\bar{X}_{\text {Morning }}-\bar{X}_{\text {Afternoon }}>0\right)$. We know that $\bar{X}_{\text {Morning }}-\bar{X}_{\text {Afternoon }} \sim N\left(.73-.77=-0.04, \sqrt{\frac{.12^{2}}{4}+\frac{.1^{2}}{4}}=.078\right)$.

$$
\begin{aligned}
P\left(\bar{X}_{\text {Morning }}-\bar{X}_{\text {Afternoon }}>0\right) & =P\left(Z>\frac{0-(-0.04)}{.078}\right) \\
& =P(Z>0.51) \\
& =0.305
\end{aligned}
$$

4. In 200 tosses of a fair coin:
a. What is the expected value and standard deviation of number of heads?

Answer:

Let X be the number of heads in 200 tosses of a fair coin. By properties of Binomial distribution, $E(X)=n p=200 \times 0.5=100$ and $s d(X)=\sqrt{n p(1-p)}=\sqrt{200 \times 0.5 \times 0.5}=7.07$.
b. Use the normal distribution approximation to find the probability of exactly 110 heads.

Answer:

To use Normal approximation, we need $Y \sim N(100,7.07)$. Since $P(Y=110)$ is zero, we need to use continuity correction factor. Hence:

$$
\begin{align*}
P(X=110) & \approx P(110-0.5 \leq Y \leq 110+0.5) \\
& =P(109.5 \leq Y \leq 110.5) \\
& =P(Y \leq 110.5)-P(Y \leq 109.5) \\
& =P\left(Z \leq \frac{110.5-100}{7.07}\right)-P\left(Z \leq \frac{109.5-100}{7.07}\right) \\
& =P(Z \leq 1.49)-P(Z \leq 1.34) \\
& =0.9318-0.9099=0.0219 \tag{1}
\end{align*}
$$

c. Use formula of binomial probability to compare the results.

Answer:

Exact probability can be calculated as:

$$
P(X=110)=\binom{200}{110}(0.5)^{110}(1-0.5)^{200-110}=0.021
$$

d. What is the probability that we have less than or equal to 95 heads? (Use continuity correction factor)

Answer:

$$
\begin{aligned}
P(X \leq 95) & \approx P(Y<95+0.5) \\
& =P\left(Z<\frac{95.5-100}{7.07}\right) \\
& =P(Z<-0.64)=0.2611
\end{aligned}
$$

Fun fact! using a modern programming languages, $P(X \leq 95)=0.2623112$. Therefore, our approximation is within 2 decimal places of the correct answer.
5. Suppose that the amount of time teenagers spend weekly working at part-time jobs is normally distributed with a mean of 300 minutes and standard deviation of 40 minutes. Suppose that we sampled this population with a sample size of n and the average of the sample is $\bar{X}_{n}=360$. Construct confidence intervals for the population mean with the following confidence levels and sample sizes:
a. Does the CI become larger or smaller as the confidence level increases?

Answer:

We first need to figure out the $z_{\alpha / 2}$. For $90 \% \mathrm{CI}, z_{\alpha / 2}=1.645$. For $95 \% \mathrm{CI}, z_{\alpha / 2}=1.96$. For 99% CI, $z_{\alpha / 2}=2.575$.

The confidence interval for μ can be constructed as $\bar{x}_{n} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$. Therefore, for $n=9$ and 90% confidence level:

$$
\bar{x}_{n} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}=360 \pm 1.645 \times \frac{36}{\sqrt{9}}=360 \pm 19.74=(340.26,379.74)
$$

Using similar calculation, we get:

Confidence Level	$n=9$	$n=25$
90%	$(340.26,379.74)$	$(348.156,371.844)$
95%	$(336.48,383.52)$	$(345.888,374.112)$
99%	$(329.1,390.9)$	$(341.46,378.54)$

b. Does the CI become larger or smaller as the confidence level increases?

Answer:

It becomes wider (larger). It makes sense since in the formula, $z_{\alpha / 2}$ is in the numerator, therefore as $z_{\alpha / 2}$ gets bigger $z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$ becomes bigger
c. Does the CI become larger or smaller as the sample size increases?

Answer:

It shrinks (becomes smaller). It makes sense since in the formula, n is in the denominator, therefore as n gets bigger $\frac{\sigma}{\sqrt{n}}$ becomes smaller.
d. With fixed confidence level and sample size, would the CI become larger/smaller/not change if the sample mean were smaller than 360 ?

Answer:

It won't change since the width of the confidence interval depends only on confidence level and sample size. Therefore, the confidence interval will only shift when we change the sample mean.
6. A sample of 121 cans of coffee showed an average weight of 16 ounces and a standard deviation of 1 ounces. Find an 80% and a 98% confidence interval for the population mean.

Answer:

Since σ is unknown, We must use t-distribution. $d f=n-1=121-1=120$. We note that for a $80 \% \mathrm{CI}$, we need to find $t_{0.2 / 2}=t_{0.1, d f=120}=1.289$ and for $98 \% \mathrm{CI}$, we need to find $t_{0.02 / 2}=t_{0.01, d f=120}=2.358$.

The $80 \% \mathrm{CI}: \bar{x} \pm t_{\alpha / 2} \frac{s}{\sqrt{n}}=16 \pm 1.289 \times \frac{1}{\sqrt{121}}=(15.88,16.12)$.
The $98 \% \mathrm{CI}: \bar{x} \pm t_{\alpha / 2} \frac{s}{\sqrt{n}}=16 \pm 2.358 \times \frac{1}{\sqrt{121}}=(15.79,16.21)$.
7. Among 81 individuals sampled from the population, 24 smokers were observed.
a. Develop the $90 \% \mathrm{Cl}$ for the population proportion.

Answer:
$\hat{p}=\frac{24}{81}=0.2963$. Therefore, $E=z_{\alpha / 2} \sqrt{\frac{\hat{p(1-\hat{p})}}{n}}=1.645 \times 0.0507=0.0835$
Now we can find the 90% CI as $\hat{p} \pm E=0.2963 \pm 0.0835=(0.2128,0.3798)$
b. If now you have a new sample of 150 individuals, determine an interval for the number of smokers based on your answer from question 3 .

Answer:

If we know the true proportion $\frac{x}{N}$ of smokers is between $(0.2128,0.3798)$ then number of smokers among 150 people is $150 \times(0.2128,0.3798)=(31.92,56.97)$. But since we want the number of smokers (i.e. an integer), this should be an integer. We need to round it to $(31,57)$.

