Worksheet 5

Fred Azizi
2023-10-17

1. 4 candidates are running for mayor; Adams, Brown, Collins and Dalton (We assume one of the candidates is going to win, there is no run off). The following probabilities are assigned:

$$
\begin{aligned}
& P[\text { Adams wins }]=0.42 \quad P[\text { Brown wins }]=0.09 \\
& P[\text { Collins wins }]=0.27 \quad P[\text { Dalton wins }]=0.22
\end{aligned}
$$

Determine the probabilities for the following events (use 2 decimal places):
a. Adams loses. $\longrightarrow P(A d m$ loses) $=1$ - P (Gem wins)
b. Either Brown or Dalton wins.

$$
=1-0.42
$$

c. Adams, Brown, or Collins wins.

$$
=0.58
$$

\checkmark

$$
P(B W \cup D W)
$$

addition
Rok $=P(B W)+P(D W)-P(B W \cap D W)$

$$
\begin{aligned}
& =\begin{aligned}
=0.09+0.22=0.31 \\
H
\end{aligned} \\
& \text { (c) } P(\underbrace{(W \cup B W}) \cup(w)=P(H)+P((w)-P(H \cap(w) \\
& =P(A w)+P(B w)+P(C w)=0.42+0.09 \\
& \\
& \\
& \\
&
\end{aligned}
$$

2. $P[A]=0.30$ and $P[B]=0.40$. If A and B are mutually exclusive events, what is $P[A \cup B]$?
3. $P[A]=0.60$ and $P[B]=0.70$. If A and B are independent events, what is $P[A \cup B]$?
additivion Tile:

$$
\begin{aligned}
P(A \cup B) & =\overbrace{\downarrow}^{P(A)}+\frac{P(B)}{\downarrow}-P(\mathbb{A}(B) \\
& =0.3+0.4-0 \\
& =0.7
\end{aligned}
$$

(3)

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-\frac{P(A \cap B)}{P(A) P(B)} \\
& =0.6+0.7-0.6+0.7 \\
& =0.88
\end{aligned}
$$

4. Assume you have applied for two scholarships, a Merit scholarship (M) and an Athletic scholarship (A). The probability that you receive an Athletic scholarship is 0.18 . The probability of receiving both scholarships is 0.11 . The probability of getting at least one of the scholarships is 0.3 .
a. What is the probability that you will receive a Merit scholarship?
b. Are events A and M mutually exclusive? Why or why not? Explain. P(A $\cap M) \neq \sigma$
c. Are the two events A, and M, independent? Explain, using probabilities.
d. What is the probability of receiving the Athletic scholarship given that you have been awarded the Merit scholarship? $P(A \mid M)=?=\frac{P(A \cap M)}{P(M)}=\frac{0.11}{0.23}=0.47$
e. What is the probability of receiving the Merit scholarship given that you have been awarded the Athletic scholarship?

$$
P(M \mid A)=\frac{P(A \cap M)}{P(\sqrt{1})}=\frac{0.11}{0.18}=0.61
$$

$$
P(A)=0.18, P(A \cap M)=0.11
$$

$$
P(A \cup M)=0.3
$$

$$
\text { (a) } P(M)=\text { ? }
$$

$P(A \cup M)=P(A)+P(M)-P(A \cap M)$
$\begin{array}{ll}0.3 & =0.18+P(M)-\ 0.11 \\ -0.18 & -0.18\end{array}$
$+0.1^{1} \quad P(M)=0.23$

$$
0.11 \stackrel{? ?}{=} \frac{0.18 \times 0.23}{0.11}=0.04 \rightarrow \text { Not independent }
$$

5. 60% of the student body at UTC is from the state of Tennessee (T), 30% are from other states (O), and the remainder constitutes international students (I). Twenty percent of students from Tennessee lives in the dormitories, whereas, 50% of students from other states live in the dormitories. Finally, 80% of the international students live in the dormitories.
(a) What percentage of UTC students lives in the dormitories?
(b) Given that a student lives in the dormitory, what is the probability that they are an international student?
(c) Given that a student does not live in the dormitory, what is the probability that they are an international student?

$=(1-P(D \mid I)) \cdot P(I)$
 $$
1-\frac{P(D)}{0.35}
$$

6. A survey asked 100 residents in a town whether they are smokers. Given the following information on the residents' response:

	Daily Workout	No daily workout	Total
Non-smoker	40	30	70
Smoker	20	10	30
Total	60	40	100

(a) Find the joint probability table.
(b) What is the probability that a randomly selected resident worksout daily?
(c) What is the probability that a randomly selected resident doesn't workout daily?
(d) What is the probability that a randomly selected resident worksout daily and is a smoker?
(e) What is the probability that a randomly selected resident worksout daily or is a smoker?
(f) A randomly selected resident doesn't workout daily. What is the probability that the resident is a smoker?

