Worksheet 4

$$
S_{\gamma}=\sqrt{\frac{1}{n-1}\left(\sum\left(y_{i}-\bar{y}\right)^{2}\right.}
$$

Fred Azizi
$S x$
By

1. The following data has mean income and housing for 10 cities in Florida. Valuexare in dollars (\$) add the nearest thousand.
 relationship between the varaibles? $\overline{\hat{x}}=20.6 \quad \overline{2}=112 \quad \sum\left(x_{i}^{\prime} ; \overline{-}\right)^{2}$
$\boldsymbol{\alpha}$ b. Calculate the least square line.
c. Calculate the coefficient of variation

$$
\begin{aligned}
& \text { (2) Lat +in "r dactreinar-r) } \\
& \text { - (Q) } \\
& S_{X Y}=\frac{915}{10-1}=101.66 \\
& S_{x}=\sqrt{\frac{1}{9} 396.4} \approx 6.20 \\
& S_{Y}=\sqrt{\frac{1}{9} \cdot 9066} \sim 21.26
\end{aligned}
$$

$$
r=\frac{S_{X Y}}{S_{X} S_{Y}}=\frac{101.66}{6.20-21.26}=0.77
$$

linear
Strong posilivérelationship betwen X, Y.
(b) IS Line $\rightarrow\left\{\begin{array}{l}b_{1}=\frac{S_{X Y}}{S_{X}^{2}}=\frac{101.66}{(6.2)^{2}} \approx 2.64 \\ b_{0} \approx \bar{y}-b_{1} \bar{x}=112-\end{array}\right.$

$$
\begin{aligned}
& 2.64 \times 29.6 \\
= & 33.86
\end{aligned}
$$

(C) $C V_{x}=\frac{S_{x}}{\bar{x}}=\frac{6.2}{29.6}=0.21$

$$
C V_{y}=\frac{S_{y}}{\bar{y}}=\frac{21.26}{112}=0.19
$$

(d) Coef of determinorion

$$
=v^{2}:(0.77)^{2}=0.5929
$$

2. A sample of 30 observations has a standard deviation of 4 . Find the sum of squared deviations from the sample mean.

$$
\rightarrow \sum_{i=1}^{30}\left(x_{i}-\bar{x}\right)^{2}=16 \cdot 29=464
$$

3. Following observations are given for two variables.

4. 4 candidates are running for mayor; Adams, Brown, Collins and Dalton (We assume one of the candidates is going to win, there is no run off). The following probabilities are assigned:

$$
\begin{aligned}
& P[\text { Adams wins }]=0.42 \quad P[\text { Brown wins }]=0.09 \\
& P[\text { Collins wins }]=0.27 \quad P[\text { Dalton wins }]=0.22
\end{aligned}
$$

Determine the probabilities for the following events (use 2 decimal places):
a. Adams loses.
b. Either Brown or Dalton wins.
c. Adams, Brown, or Collins wins.

