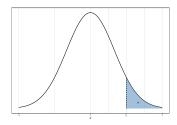
Chapter 8 (part 2)

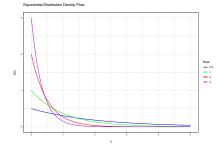
Fred Azizi

2023-11-14


Quick review (1)

Continuous random variable:

- Normal Random variable
 - Always defined with a mean (μ) and variance (σ^2). Standard Normal is Normal with $\mu = 0$, $\sigma^2 = 1$.
 - For finding probabilities of interval (*a*, *b*), we need tables/computer programs.
 - Can convert any Normal RV (X) to standard Normal by



• Percentiles in Normal distribution, Z_A is defined as $P(Z > Z_A) = A$.

Quick review (2)

- Exponential Random Variable:
 - Defined by parameter λ .
 - $\mu = \sigma = \frac{1}{\lambda}$.
 - $P(X < x) = 1 e^{-\lambda x}$
 - $P(x_1 < X < x_2) = P(X < x_2) P(X < x_1) = e^{-\lambda x_1} e^{-\lambda x_2}$
 - relationship between Poisson RV and Exp RV, read this.

Other distributions:

- Student's t distribution with parameter ν (called "degrees of freedom").
 - E(t) = 0

•
$$V(t) = \frac{\nu}{\nu-2}$$
 for $\nu > 2$

• χ^2 (pronounced Chi-squared) distribution with parameter ν .

•
$$E(\chi_{\nu}^{2}) = \nu$$
.
• $V(\chi_{\nu}^{2}) = 2\nu$

• *F* distribution with two parameters ν_1 and ν_2 .

•
$$E(F_{\nu_1,\nu_2}) = \frac{\nu_2}{\nu_2 - 2} \quad \nu_2 > 2$$
.
• $V(F_{\nu_1,\nu_2}) = \frac{2\nu_2^2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)} \quad \nu_2 > 4$