Chapter 7

Fred Azizi

2023-10-23

Quick review (1)

- Discrete Probability distribution
- $0 \leq P(x) \leq 1 \quad$ for all x
- $\sum_{\text {all } x} P(x)=1$
- Population Mean: $E(X)=\mu=\sum_{\text {all } x} x P(x)$
- Population Variance: $V(X)=\sigma^{2}=\sum_{\text {all } x}(x-\mu)^{2} P(x) \propto$

$$
=E\left(x^{2}\right)-[E x x]^{2}
$$

Quick review (2)

- Laws of Expected Value (note that c means a constant, a number)

$$
\begin{array}{ll}
1 & \bullet E(c)=c \\
\cdot & \text { • } E(X+c)=E(X)+c \\
\text { - } E(c X)=c E(X)
\end{array}
$$

- Laws of Variance
- $V(c)=0$
- $V(X+c)=V(X)$
- $V(c X)=c^{2} V(X)$

Quick review (3)

Binomial random variable

- The binomial experiment consists of a fixed number of trials (n).
- Each trial has two possible outcomes: S / F.
- The probability of success is p (fixed). The probability of failure is 1-p (fixed).
- The trials are independent.
- $P(x)=n C x \quad p^{x}(1-p)^{n-x}$.
- $E(x)=n p, \operatorname{Var}(x)=n p(1-p)$.

Quick review (4)

The Poisson random variable

- Defined as number of successes that occur in a period of time or an interval of space.
- The number of successes that occur in any interval is independent of the number of successes that occur in any other interval.
- The probability of a success in an interval is the same for all equal-size intervals.
- The probability of a success in an interval is proportional to the size of the interval.
- $P(x)=\frac{e^{-\mu} \mu^{x}}{x!}$ where μ is the mean number of successes in the interval or region.
- $E(x)=\mu, \operatorname{Var}(x)=\mu$.

