Chapter 6 Review

Fred Azizi

2023-10-17

Quick review (1)

Given a sample space $S=\left\{O_{1}, O_{2}, \ldots, O_{k}\right\}$

- $0 \leq P\left(O_{i}\right) \leq 1$ for each i
- $\sum_{i=1}^{k} P\left(O_{i}\right)=1$.

Quick review (2)

- Mutually exclusive: No two outcomes can occur at the same time.
- Exhaustive events: All possible outcomes are included.
- Intersection of Events A and B : the event that occurs when both A and B occur. $\quad P(A \cap B)$
- Union of Events A and B is the event that occurs when either A or B or both occur. It is denoted as A or B. $P(A \vee B)$
- Conditional Probability: The probability of event A given event B is

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}
$$

P(AAB) ${ }^{\circ}$ Independent Events: A and B are said to be independent if $P(A \mid B)=P(A)$ or $P(B \mid A)=P(B)$.
$P(A \cap B)=P(A) P(B)$

Quick review (3)

- Complement Rule: $P\left(A^{C}\right)=1-P(A)$.
- Multiplication Rule: $P(A$ and $B)=P(B) P(A \mid B)$.
- Addition Rule: $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Quick review (4)

- Probability Trees: Helps with showing the events in an experiment by lines using conditionality.
- Joint Probabilities table: Shows the joint probabilities across ${ }^{\text {Pres }}$ different levels of categories.
- Marginal probabilities: From Joint distribution table, computed by adding across rows or down columns.

Quick review (5)

Additional terminologies (for homework only):
For question 14 of homework we define: $\mathrm{C}=$ an individual has the genetic condition, $\mathrm{C}^{\mathrm{c}}=$ an individual does not have the genetic condition, $\mathrm{PT}=$ a positive blood test, and NT $=$ a negative blood test.

2- $P(P T \mid C)$ is called the sensitivity.

- $P\left(N T \mid C^{C}\right)$ is called the specificity
- $P(C \mid P T)$ is called the positive predictive value.
- $P\left(C^{C} \mid N T\right)$ is called the negative predictive value.
$P(C)$ is given at the beginning of the question. Use Bayes Rule to find positive predictive value and negative predictive value

$$
P(C \mid P T)=\frac{P(C \cap P T T)}{P(P T)}=\frac{P(P+1 C), P C C C)}{P(P T \mid C) P(C)+P(M \mid E) P(C)}
$$

