Chapter 1

Fred Azizi

2023-12-05

Quick review (1)

 In hypothesis testing we want to consider the plausibility of a specific claim (claims are called hypotheses)

H₀: "H-naught," "H-null," or "null hypothesis."

 H_1 (sometimes written as H_a): "alternative hypothesis."

- The null hypothesis (*H*₀)
 - Gets the benefit of the doubt
 - The default belief or "status quo"
 - Associated with no change in course
- The alternative hypothesis (H₁)
 - Carries the burden of proof
 - Change our belief
 - Requires us to take some action or change our action
- Three setup for tests:
 - Alternative: $\mu \neq \mu_0$ (two tailed test)
 - Alternative: $\mu > \mu_0$ or $\mu < \mu_0$ (right/left tail test)

Quick review (2)

Procedure of testing When σ is known, $Z_{\bar{X}} = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$

- Identify the hypotheses with a hypothesized value for μ , μ_{H_0} .
- Determine the significance level, α
- Calculate the z-test statistic $z_{\bar{x}} = \frac{\bar{x} \mu_{H_0}}{\sigma / \sqrt{n}}$

who in

- Critical value method (or rejection region method) the set the Ha: M>Ma
- critical z-score identifies the rejection region 2
- determined by α : z_{α} (upper-tail), $-z_{\alpha}$ (lower-tail) or $\pm z_{\alpha/2}$ (2-tail)
- compare the test statistic with the critical value(s): Reject H_0 if test statistic falls in the rejection region
- p-value method:
- The p-value (sometimes referred to as the observed level of significance) is the probability of observing a sample mean (or test statistic) at least as extreme as the one selected for the hypothesis test, assuming the null hypothesis is true. <u>く \-?(そ)を)</u>
- Compare p-value with α . Reject H_o if p-value is less than α

Ha . MPK