Chapter 8 (part 2) and Chapter 9 (part 1)

Fred Azizi

2023-11-21

Quick review (1)

Quick review (2)

Other distributions:

Student's t distribution with parameter ν (called "degrees of freedom").

•
$$E(t) = 0$$

• $V(t) = \frac{\nu}{\nu-2}$ for $\nu > 2$
• χ^2 (pronounced Chi-squared) distribution with parameter ν .
• $E(\chi^2_{\nu}) = \nu$.
• $V(\chi^2_{\nu}) = 2\nu$.
• F distribution with two parameters ν_1 and ν_2 .

•
$$E(F_{\nu_1,\nu_2}) = \frac{\nu_2}{\nu_2 - 2} \quad \nu_2 > 2$$
.
• $V(F_{\nu_1,\nu_2}) = \frac{2\nu_2^2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)} \quad \nu_2 > 4$

Quick review (4)

Central Limit Theorem

The sampling distribution of the mean of a random sample drawn from any population is approximately normal for a sufficiently large sample size.

- Mean of distribution of the sampling mean is the same as mean of the population, $\mu_{\bar{X}} = \mu$
- Standard deviation of the sampling distribution (standard error of the mean is $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$
- $\bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}}).$
- Finite population correction for standard error:

$$\frac{n}{N} > 0.0r$$
 $rac{r}{\sigma_{\bar{X}}} = \sqrt{\frac{N-\theta}{N-1}} \frac{\sigma}{\sqrt{n}}$

• Rule of thumb: Use for population that is at least 20 times larger than the sample size